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FINITE ELEMENT LIMIT ANALYSIS USING LINEAR
PROGRAMMING
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Abstract—This paper concerns the development of numerical methods for the determination of the ultimate
load of two- and three-dimensional structures assuming an ideal rigid-plastic behavior of the material. According
to the classical plasticity theory the ultimate load problem can be mathematically formulated as the problem of
finding the maximum or minimum of a linear function, whose independent variables are subjected to inequality
constraints. In order to use linear programming techniques these generally nonlinear constraints are approximated
by sets of linear inequality restrictions. Linear equilibrium or kinematic compatibility equations have then to be
formulated, the corresponding coefficients being determined by virtual work methods. This requires the assump-
tion of parametric stress and displacement fields, which are constructed by mean of finite element procedures.
Numerical results for two plate-bending models are presented and some possible plate-stretching models are
described and discussed.

1. INTRODUCTION

THE behavior of complex structural systems above the elastic range can be determined
by a nonlinear type of analysis. However, the description of the nonlinear material proper-
ties in mathematical terms often cannot be accurate enough as to justify the great computa-
tional effort generally involved in such procedures. This is true for most soil and rock
mechanics as well as for many reinforced concrete ultimate load problems.

On the other hand, if a rigid-ideal-plastic material behavior can be assumed, the upper-
bound and the lower-bound theorems of the plasticity theory provide a powerful tool for
the direct determination of limit loads. Of course, the scope of such an analysis is somehow
limited as the only informations obtained are a load factor and possibly the shape of the
collapse mechanism. Moreover, yield-conditions, just like nonlinear stress—strain relations,
are sometimes difficult to determine in an accurate way.

However, if it is possible to develop easy-to-use computer programs capable of treating
a wide variety of problems with a limited computational effort, plastic analysis can find
many applications in everyday’s civil engineering practice.

The aim of this paper is to show how to assume mathematical models for two- and
three-dimensional structures leading to such efficient computer programs. The latest
developments of the finite element method, especially those connected with “mixed”
formulation of elastic analysis [4, 5,8, 1, 2], are used for this purpose. The limit load is
then found by linear programming,

Formally the problem can be stated as that of finding the load factor A for which a
given structure collapses (see Fig. 1). The loads are body forces Ag; and surface tractions At;
acting on the S,-portion of the external boundary surface in the direction of the cartesian
coordinates x,,x,,xs(i = 1,2,3). On the S,-portion of the surface S (S = S,+S,) the
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F1G. 1. Three-dimensional continuum loaded by body-forces Ag; and surface-tractions At;.

displacements u; must be zero. Corresponding stresses and strains are denoted by ¢;; and
g (i=1,23;j=1,23)

Throughout the paper index- and matrix-notation are used. Index notation always refers
to the stated three-dimensional problem in cartesian coordinates. A repeated subscript
means summation over all possible values of the subscript. Contrary to standard tensor
notation, however, this sum convention applies only for subscripts, not for superscripts.
A comma followed by one or two subscripts means partial derivative with respect to the
corresponding coordinates.

Matrix and vector symbols are always written in brackets. As matrix notation can be
applied to any kind of structures, matrices and vectors are generally not formally defined.
It will not be difficult for the experienced reader to find the definitions applying to his
particular problem.

The procedures suggested generally do not provide a mathematical bound of the true
value of the load factor A but just a good approximation of it, as some of the requirements
of the lower-bound and of the upper-bound theorem of plasticity are not satisfied exactly.
Only in special cases is it possible to show that the obtained value of A must be a mathe-
matical bound of the true value.

2. LINEARISATION OF THE YIELD CONDITIONS

The stress components o;; within an ideal rigid-plastic body must everywhere satisfy
the yield condition
0<c—f(oy) 1)

where both the positive constant ¢ and the function f(s,;) are material dependent. The
yield condition (1) will be checked only at a finite number of points with coordinates
x,x%, x§(qg = 1-Q), where the stress components assume the values 6¥;:

0<—f4o%) (@=1-Q) 2)
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The equation:
0 = c*—f%af) (3)
describes, in the of-space, the yield surface at a checkpoint q (see Fig. 2). In order to use
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F1G. 2. Section through the linearized yield surface in the ¢%; é/-space at a checkpoint g.

linear programming algorithms each of the nonlinear inequalities (2) has to be approximated
by a set of linear inequalities:

0 < cM—fHoy (h = 1-HY). )
In matrix notation:
0<—{f"T{6Y  (h=1-HY (5)
or:
0 < {c} = [/1"{a"}. (6)
The yield surface is approximated by a polyhedron, whose faces are given by the equations:
0= c—flifal = M—{/*7{e)  (h=1-HY). ™

A vector { f™} is normal to the hth face of the gth yield polyhedron and pointed toward the
outside of the admissible stress domain. The inequalities (5) state, that the yield conditions
at the checkpoint q are satisfied, if the projection of the stress vector on each of the { f*9}-
vectors is not greater than ¢"¥/|{ f*4}| (c** > 0).

At least for three-dimensional stress spaces (for instance in plate-stretching and plate-
bending problems) the approximation of the nonlinear yield conditions by sets of linear
inequalities is generally easy. For the reinforced concrete plate-bending models described
in Section 9 the following nonlinear yield conditions (see Wolfensberger [12]) are to be
linearized :

Px = mx 2 Nx

Py 2 m}’ 2 NY
(Px—mx)(Py—my) = (mxy_ny)2
(Nx+mx)(Ny+my) = (mxy_ny)z,

)
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where m,, m,, m,, are the bending and twisting moments, defined in the usual way. P,, P,,
N,, N, are the positive and negative yield moments in x- and y-direction and P, and N,
are constants, which are only different from zero, if the directions of the reinforcing steel
bars are different from the directions x and y. Wolfensberger [12] suggests the linearization
of the yield conditions (8) by eight linear inequalities leading to the following definition
of the vectors {c%}, {c?} and of the matrix [f97:

P.+P, ) [+1 0 +1]
P-P, +1 0 -1
P,+P, 0 +1 +1
m'l
P—P, 0 +1 -1 ¥
{e=¢ 7 7 a7 = 6 ={ml ). 9
Pl ns| UT= | g 4y = ©)
mq
N,—N,, -1 0 -1 i
N,+N,, 0 —1 +1
N,—-N,, L 0 —1 —1]

Other examples of linearized yield conditions can be found in Ref. [3].

3. INTERNAL RATE OF DISSIPATION

According to the plasticity theory the stress components o;; and the corresponding
strain velocity components ¢;; during collapse are related as follows:

. of _{o’c_>_0 if 0=c—f(o)
& = &

: . (10)
T odo; =0 if 0<c—f(oy)

ij

In a region of the rigid-plastic body with volume AV*, where the yield surface is approxi-
mated by the gth yield polyhedron, equation (10) becomes :

>0 if 0=cM"—fMo,;
{ i M —fMoy; (a1

S hqshq
P !
Y TUeM=0 if 0<cM—foy.

Or, in matrix notation :
. . o JE2 0 if 0= cM—{f"T{s}
— hay yhg _ q q
T O A R

Equation (12) states that the strain velocity vector {¢} has to be a linear combination
(with non-negative but otherwise arbitrary multipliers &@"9) of the vectors { /*} normal to
the faces of the gth yield polyhedron, which are reached by the stress vector {s}.

The rate of dissipation D? within AV (total volume V = ) AV is given by:

= [[[amsav= [[[ @riorav w

AVa AVa
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or, using equation (12):

b=y f J J &9 P07 (5} AV, (14)

Considering that 4™ can only be different from zero where { f*¢}{s} equals c* the integral
(14) is transformed to:

D! = ;c"“ f” ghady = ;chqﬁhq (15)

AV

the non-negative f"-variables being defined by :

fra = f”a’wdvz 0. (16)

AVae

The introduction of the f*-variables allows the evaluation of the total rate of dissipation D
by the following simple linear function:

D=YD'=Y ;chqﬂ"q =Y {}7{BY}. (17)

Numerical values for the f*-variables are obtained by solving the linear program. It is,
therefore, important to understand their physical meaning: " is a generalized strain
velocity parameter corresponding to an average value, within AVY, of the component
of the strain velocity vector {¢} in the direction normal to the hth face of the gth yield
polyhedron, ie. in the direction of {f*9}. It should also be noted that the regions of the
rigid-plastic body with volume AV%q = 1-Q) are not ““finite elements”. Their boundaries
are generally undefined. No integration over AV? has ever to be performed.

4. PARAMETRIC STRESS AND DISPLACEMENT FIELDS

The suggested numerical methods require the assumption of parametric functions for
both the displacement components u; and the stress components o;:

u; = d)im(xlax2’x3)Wm (18)

;= Wijn(xl’XZ’x3)Sn (19)

ty
®,, and ¥;;, are the assumed functions, W,, and S, the corresponding displacement and
stress parameters (m = 1-M ; n = 1-N).

Both the ®,,— and the ¥;;,—functions are constructed by subdividing the continuum
into E **finite elements” with simple geometric shapes. Within an element e (¢ = 1 — E), the
displacement and the stress components are given by :

u; = @idx 1, X2, X3)WE (20)

i = Yilxy, Xz, X3)s 21

where the ®7’s and the y;’s are locally assumed simple continuous functions (k = 1-K*;
I = 1-L®). The wy’s and the s;’s are the corresponding local displacement and stress para-
meters. These parameters either correspond to the values of the assumed functions at
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specific points on the element boundary (external parameters) or are associated with the
element itself (internal parameters). External parameters are always introduced in order
to satisfy continuity requirements between elements as well as boundary conditions.

Local parameters w; and s; and global parameters W,, and S, are related by the following
topological equations:

wp = a;,, W, (22)
. . ‘ 5i = biuS, (23)
or, In matrix notation:
{w} = [a]{W} (29
{s} = [b°1{S} (25)
the coefficients af,, and b;, of the boolean matrices [a®] and [b°] being defined by :
a, =1 if wi=W, otherwise g, =0 (26)
=1 if sf =S8, otherwise bf, =0. (27)
Within an element e the global and the local assumed functions are then related by:
DO, = Piim (28)
\Pijn = d/?jlbln' (29)

5. LIMIT ANALYSIS BY THE LOWER BOUND APPROACH:
A - MAXIMUM

According to the lower bound theorem of the plasticity theory, the assumed stress
components ¢;; must be in equilibrium with the external loads Ag; and At; and satisfy
the yield condition (1) everywhere within the continuum.

The principle of virtual displacements states that the stresses o;; and the loads Ag; and
At; are in equilibrium, if for any arbitrary kinematically admissible or non admissible
virtual displacement field u¥ the following variational equation is satisfied :

1 o] o
flfz(u;’jﬁu}ji)a,-,-dV i[[/fj urg; dvV+ J'Stf ukt ds] 0 (30)

The first integral represents the internal virtual work done by the stresses o;;, the second
and third integrals the virtual work done by the external loads Ag; and At;.

Introducing the parametric assumptions (18) and (19) for both the stress components
o;; and the virtual displacement components u}* equation (30) is transformed to:

W,‘:‘,([ f f f %(@im,,.+q>,m,,.)ly,.j,dv]sn
—1“”@,.,,gidv+ ff@imt,-dS]) =0. (31)
v St



Finite element limit analysis using linear programming 1419

Because equation (31) has to be satisfied by any value of the virtual displacement parameters
Wi-W3j the following system of linear equations for the unknown stress parameters
S,—Sy is obtained :

GpnS,— AP, =0 (m=1-M) (32)

or, in matrix notation:
[G]MxN{S}NXI_l{P}MXI =0 (33)
the coefficients G,,, and P, being defined by:

1
Gmn = J'JAJ‘ E(q)im,j + (Djm,i)\Pijn dv (34)
| 4

P, = f f f ®,.g dV+ f J @, t; dS. (35)
v Se

[G] will be called the global equilibrium matrix, { P} the global load vector of the system.
A coeflicient G,,, represents the work done by the stresses due to S, = 1 for the strains due
to Wk = 1. P, represents the work done by the external loads for the displacements due
to Wk = 1. Obviously equation (33) will in general only lead to an approximate satisfaction
of the equilibrium conditions.

Equation (34) can be used to evaluate the G,,,-coefficients as long as the assumed
displacement functions ®,, are kinematically admissible, i.e. continuous, and satisfy the
kinematic boundary conditions :

u* =@, =0 on S,. (36)

However, provided that the ¥, -functions satisfy certain continuity and boundary con-
ditions (see Section 8) the integral (34) can be evaluated even if the @, -functions are not
kinematically admissible by the following transformation (Green’s theorem):

Gpn = — J'J‘J\ (Dim\yijn,j dV+ J.f (Di’"\Pij"vi ds 37
v Su+Se

the v;’s being the components of a unit vector {v} normal to the boundary surface (see
Fig. 1).

‘The stress parameters S,—Sy also have to satisfy yield conditions. These are formulated
at ‘Q checkpoints, where the functions ¥, ,, assume the values ¥%,(q = 1-Q):

ijn ijn

o-‘ilj = lP‘iljnSn (38)
or, in matrix notation:
{0} = [¥9]{S}. (39)
Introducing equation (39) in (6) the following system of linear inequalities results:
0 < {c}—[fI¥YI{S} (g=1-Q) (40)

The yield conditions can be satisfied exactly everywhere inside the continuum only if the
assumed ¥,-functions are piecewise linear or constant. If nonlinear ¥, -functions are
chosen, local violations of the yield conditions have to be taken into daccount.
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From (33) and (40), together with the condition A = maximum, the following linear
program is obtained (see Fig. 3):
A — maximum
0= —{P}i+[G]{S} (41)
0 <} =[f1I¥I1{S} (¢ =1-0)).

1A {s}

A= 1 —— Maximum
0- T
0-= HP} [6] M
: 1
e [ ) '
3
0x e |k
]
{c -l v TH“
Os i

[P |

F1G. 3. Tableau form of the linear program (41).

6. LIMIT ANALYSIS BY THE UPPER BOUND APPROACH:
). — MINIMUM

The rate of work L, done by the external loads during collapse, can be evaluated as
follows using, for the displacement velocity field #;, the assumptions (18) and the definition

(35):
ffqug,dV+qult ds
_ /1[ f f f e dV+ f f o, 1 dSJ W, = AP, W, = A{P)T{W). (42)

The internal rate of dissipation D is given by equation (17):
D=3 D" =3 Y cMp =5 {c}T{p. (43)
q q h q
Because only the ratio between L and D isrelevant, the following condition can be imposed :

{PY{W} =1 (44)
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During collapse L equals D. It follows:
L=MP}T{W}=1=D=) {¢4"{$} - minimum. (45)
q

The upper-bound theorem of the plasticity theory requires the velocity field u; used to
evaluate L to be kinematically compatible with the strain velocity field ¢;; used to evaluate
D. Kinematic compatibility equations between the displacement velocity parameters
W,, and the generalized strain velocity parameters " have therefore to be formulated.

The principle of virtual stresses states, that a displacement velocity field #; and a strain
velocity field ¢;; are kinematically compatible if for any arbitrary virtual stress field o, the
following variational equation is satisfied [11]:

”fa;gsijdV— f”gde— ” t*i;dS = 0. (46)
|4 v S:

The first integral represents the rate of work done by the virtual stresses of;. The second
and third integrals represent the rate of work done by virtual body forces g¥ and virtual
surface tractions ¢¥. The virtual loads g and ¢} must build, together with the ¢}’s, an
equilibrium system, i.e. they are derived from the virtual stresses ¢} by the equilibrium

equations:
* *
8i = —0y;

i = vk, (48)

(47

Introducing the parametric functions (18) and (19) for the #’s and o}’s equation (46)
becomes:

s::( jﬂ \P,.j,,e',.jdV—[- flf Wiin Pim dV+ g \P,.jnvjmimds]wm) = 0. (49)

This equation has to be satisfied for any value of the virtual stress parameters S¥-S¥%.
Remembering the definition (37) the following system of kinematic compatibility equations
is obtained:

¥,.idV—G W, =0 (n=1-N). (50)
v

The volume integral of equation (50) can be transformed by subdividing the domain of
integration Vin Q parts AV!-AV2. If everywhere within AV%(q = 1-Q) the yield conditions
are given by the gth yield polyhedron, the following transformation holds:

JJJ%,,.S’,-;dV = Z”f iy 4V =¥ 3 1Y ”j ¥, dV. 1)

AVa AV4

To further transform this integral an approximation is necessary :

[[] wasteav=ow, f[[amav = v (52)

Ava AVa
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where V¥, represents the value of the function '¥;;, at a checkpoint g. The generalized strain
velocity parameters 3" are defined by (16).

Introducing equations (51) and (52) in (50), the following system of linear kinematic
compatibility equations for the W, - and the f"-parameters is obtained :

—GmnWm+ Z Z \P?jnf?;]ﬂhq =0 (n = I_N) (53)
q h

or, in matrix notation:
—[GI"{W}+ YO (P} = 0. (54)

Obviously, because of the transformation (52), kinematic compatibility conditions are
only enforced in an approximate way, unless piecewise constant ¥, -functions within
each of the AV?s are assumed.

From (45), (44) and (54) the following linear program for the unknown parameters
W,, and ™ is obtained (see Fig. 4)

A=Y {c}T{$?} - minimum
0=1-{P}T{W}

. - (55)
0= —[GI{W}+ ¥ [P 1{B)

{1=0 (¢=1-0)

zAO X
1WA (B - (B
X = o [ [l [+ T |—e Minimum
o={1]| -{&
0=
0= G [T - He T T Y
0- )
(U RN e o — e o]

F1G. 4. Tableau form of the linear program (55).

The linear programs (41) and (55) are dual to each other. The same load factor A will,
therefore, be obtained. As expected the value of A only depends on the choice of the mathe-
matical model, not on the method of solution used (lower-bound or upper-bound approach),
provided that the approximations necessary for both methods are introduced in a consistent
way. A lower bound of the true value of 4 is obtained, if the assumed functions ¥,;, and
the linear inequalities (40) guarantee that the yield condition (1) is everywhere satisfied
within the continuum and if the external loads are such that microscopic equilibrium
conditions are nowhere violated. An upper bound (at least for the linearized yield condi-
tions) is obtained if the transformation (52) is valid without approximation.



Finite element limit analysis using linear programming 1423

By solving one of the linear programs (41) or(55) the solution of the other is also known.
Numerical values not only for A but also for the S,-, W,,- and f*-parameters are, therefore,
obtained.

The displacement velocity parameters W,~W,, describe the collapse mechanism. The
stress parameters S,—Sy define a corresponding state of admissible stresses. However,
because this is defined in an unique way only in the regions and in the directions, in which
plastic flow occurs; the values of the S,-parameters will generally not be very meaningful,
as large portions of the continuum may remain rigid during collapse. The generalized strain
velocity parameters % can be used to check the regions and the directions of plastic flow.

7. ON THE ASSEMBLAGE OF [G] and {P}

By means of equations (28) and (29) the coefficients G,,, and P, can be evaluated as a
sum over E finite elements with volume V¢ and surface S°(e = 1-E):

1
Gmn = Z J.J.J‘ E(q)im.j+¢)jm,i)lpijm dv
VE

1
- S| [f[ J0hrt on b [ = S st (56
Ve

P, = Zazm[ f f f ohgdVt f f o5t dS] = Y (57)
ye Se

In matrix notation:

[G] = . [a]"[g°] ("] (58)
{P} = 2 [a1{p} (59)

where the coefficients g;, and pj of the “local’” equilibrium matrices [g°] and the coefficients
of the ““local’ load vectors {p°} can be defined as follows, provided that the assumed dis-
placement functions are kinematically admissible :

g = f f f o5gdV+ f [ ot as (60)
V(? SE

p=| f [ orgcav+ [{ otaias (61)
ve Se

If the assumed displacement functions are not conforming, work is done on the element
boundaries so that different definitions have to be used. However, bearing in mind the
physical meaning of the global G,,,- and P,-coefficients, analytical expressions for the
gk~ and p;- are generally easy to derive once the local ¢§ - and y§;-functions are chosen.
The global equilibrium matrix {G] and the global load vector {P} are then assembled
by the summations procedures described by equations (58) and (59). The similarity between
these procedures and the well known “direct stiffness method” of elastic analysis is evident.
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8. ON THE CHOICE OF THE FINITE ELEMENT MODEL

In choosing the finite element approximation for both the stress and the displacement
fields, the first important question arising concerns the necessary continuity and boundary
conditions, which have to be satisfied a priori by the assumed ®,,- and ¥';;,-functions.

Virtual work principles can be applied as long as the integrals (34) or (37) can be eva-
luated. This is possible, and the transformation from (34) to (37) is valid, if the following
conditions are satisfied.

Let us consider a point on the interface between two elements, where discontinuities
may occur. A cartesian coordinate system (X,, X,, X;) is defined; the X,- and X,-axes
lying in a plane tangent to that surface, the x;-axis being normal to it. &#; and G,;; represent
the corresponding stress and displacement components.

If the assumed finite element displacement field is such that discontinuities of the
displacement component i, (i = 1, 2, 3) are possible, the assumed stress field must guarantee
the continuity of the stress component &;;. If#, is continuous, no continuity is required for
Gs,;. For ¢, and &,; continuity is never required.

Boundary conditions can be regarded as a special kind of continuity conditions : if the
continuity of a displacement component #; is ensured between elements, the geometric
boundary condition:

#;,=0 onS, (62)
has to be enforced. If ii; is discontinuous, the equilibrium boundary condition :
Gy, = A, onS, (63)

has to be enforced, #; being the specified surface traction in the direction of x;. In evaluating
the P,-coefficients by equation (35), only body forces g; have then to be taken into account.

In constructing parametric fields by the finite element method, continuity requirements
are always met by introducing as function parameters element-boundary-values of the
function itself. Therefore, provided that the proper continuity conditions between elements
are satisfied, the enforcement of boundary conditions is never difficult, the boundary
values of the stress and displacement components, for which boundary conditions have
to be enforced, being always specified by boundary parameters alone.

A second important question arising concerns the ratio N/M between the number N
of stress parameters and the number M of displacement parameters.

For a given mesh N and M depend from the chosen finite element stress and displace-
ment models and also from the boundary conditions of the problem. It can be shown,
however, that for very fine meshes, i.e. if the number of elements goes to infinity, the ratio
N/M only depends from the chosen finite element models and is, therefore, independent
from the considered problem.

Let us for instance consider such an infinitely fine two-dimensional triangular element
mesh. If NE is the number of elements, NJ the number of joints and NS the number of
sides of the mesh, the following relations hold:

NE/NJ =2 (64)

NS/NJ = 3. (65)
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For quadrilateral element meshes:

NE/NJ =1 (66)
NS/NJ = 2. (67)

As the finite elements parameters are always associated either with the joints or with the
elements or with the sides of the mesh, the ratio N/M can readily be determined.

The N stress parameters S,—S, must satisfy M linear equilibrium equations, one for
each of the assumed displacement parameters W,-W,,. Obviously N has to be greater
than M, if the system of linear equations (32) has to have a solution. If N equals M, the
system is statically determined, which is certainly unacceptable for continuous structures.
On the other hand N should not be too large compared to M, as equilibrium conditions
may then be badly violated.

But how large should N/M be in order to satisfy equilibrium within the continuum in a
consistent way? A clear cut answer is not easy to find, however, and the following criterium
seems reasonable and has been followed in the assumption of different successful finite
element models: the ratio N/M for an infinitely fine mesh should equal the ratio N /M,
of the corresponding continuous problem, where N, is the number of independent stress
components and M, the number of independent displacement components within the
continuum. M _isalso the number of partial differential equations, which have to be satisfied
by the N,_ independent stress components (for general three-dimensional problems:
N/M, = 6/3; for axisymmetric problems: N /M_ = 4/2; for plate-stretching problems:
N /M, = 3/2; for plate-bending problems: N /M = 3/1).

9. TWO PLATE-BENDING MODELS

Two plate-bending triangular-element models have been implemented. Both models
were originally proposed by Herrmann [4, 5] in “mixed” formulations of elastic finite
element plate-bending analysis. The first (linear-linear) model assumes linear deflections
and linear bending moment distribution, the second (linear—constant) model assumes
linear deflection and constant moment distribution within each triangular element. In
both cases the reinforced concrete Wolfensberger’s yield conditions (9) are used.

The displacement and stress parameters of the linear-linear model are the plate deflec-
tions w and the three moments m_, m, and m,, at each joint of the mesh. While deflection
continuity is ensured by the assumed linear functions, kinematically non-admissible slope
discontinuities along the sides of the mesh occur. The continuity of the corresponding
stresses, i.e. of the normal moments m, along each side is, therefore, necessary. The assumed
functions guarantee the continuity of all three moments m,, m,, m,,, thus also of the normal
moments m,. However, this kind of continuity is excessive and actually represents a draw-
back of the model, as tangential and twisting moments do not need to be continuous across
element interfaces.

Kinematic boundary conditions for the plate deflections w (not for the slopes, which are
discontinuous between elements) and static boundary conditions for the normal moments
m, (not for the shear forces, which are discontinuous and not for the twisting moments,
whose continuity is unnecessary) have to be enforced by eliminating from the linear
program the corresponding boundary parameters.
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Each triangular element is associated with three displacement parameters (w at each
vertex) and nine stress parameters (m,,m,, m,, at each vertex). Considering that, when
displacing the assembled element mesh, work is done only along the element edges, the
local equilibrium matrix [g°]; . o is easy to derive (see Fig. 5):

ll al bl T 1‘1
el 0 {ry" {r}
1 b I} a
e ==| = —2 2| {7 0 {r)7|. (68)

2l ha By hy

li=a+b
s; = sin Bi
- c,= cos B

{"i}={ c% }

F1G. 5. Triangular element.

If boundary conditions are ignored, a mesh with NJ joints has NJ displacement para-
meters (M = NJ) and 3-NJ stress parameters. The ratio N/M = 3 corresponds to the
ratio N_/M _ for nondiscrete plate-bending problems as explained in the previous section.

Yield conditions are checked at each joint (number of checkpoints Q = NJ) resulting
in 8- Q = 8- NJ linear inequalities. While this generally ensures that the yield conditions
are everywhere satisfied (moments vary linearly between checkpoints), no bound of the
true value of A is found as both equilibrium and kinematic compatibility conditions may
be locally violated.

The linear—constant model uses the same displacement assumptions but the moment
distribution is constant within each element. The normal moments m, along each mesh
side are chosen as stress parameters. The state of stress inside each element is, therefore,
defined by the three normal moments m,,, m,,, m,;, which are linearly related to the
moments m,, m,, m,, as follows (see Fig. 5):

m, stoef —2sic, |7 my, {rl}r 1 myy
m, o =153 ¢ —25¢, myy t = | {r2}” Mpaf - (69)
my,, 53 3 —2s3¢3 my3 {rs}T mp3
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This choice of the stress parameters ensures the necessary continuity of normal stresses
across element interfaces, while no excessive continuity is present. Again deflection- and
normal-moment-boundary conditions have to be imposed.

Local equilibrium matrices [g°]; . ; are defined by:

- )

e by
hy, hy, h
e _ by L a,
[g ]3x3 = hz hz h2 (70
a by b
L b By ke

Fine triangular meshes have about three times as many sides as joints (NS ~ 3. NJ).
The ratio N/M between the number of stress parameters N ~ NS ~ 3-NJ and the
number of displacement parameters M ~ NJ corresponds therefore to the N /M _ ratio.

Yield conditions are checked in each element (@ = NE), resulting in about twice as
many linear inequalities as in the linear—linear model (NE ~ 2- NJ).

The main advantage of the linear-constant model is, that a lower bound of the true
value of 1 is found, provided that the plate is loaded only by concentrated loads acting at
the joints. According to the classical Kirchhoff’s theory, twisting moments do not need to
be continuous nor need they to satisfy static boundary conditions, as long as the external
loads are in equilibrium with the “Kirchhoff’s shear forces”. It is then easy to see that
concentrated joint loads are balanced by internal concentrated forces at both ends of
each side, arising from twisting moment discontinuities along the side. Equilibrium and
yield conditions being satisfied exactly, a lower bound for A is found.

10. SOLUTION ALGORITHMS AND NUMERICAL RESULTS

Forthe plate-bending models described in the previoussection two separate FORTRAN
IV programs were written and tested on the CDC-6500/CDC-6400 double system of the
Computer Center of the Swiss Federal Institute of Technology in Ziirich.

While mass storage is used to partition the program itself and for several auxiliary
data transfers, the main optimalisation is done in core. However, in order to reduce both
storage requirements and central processor time a sophisticated modified version of the
so-called revised simplex algorithm is used. The main idea of this algorithm is to recalculate
at each simplex optimalisation step all needed coefficients from the initial data of the
problem and from an auxiliary *“‘basis matrix”, thus never having to store the full matrix
of the linear program.

A good measure of storage requirement is given by the number N - (N — M) of computer
words needed to store the basis matrix. This number is independent from the number of
checkpoints Q, i.e. from the number of inequalities used to linearize the yield conditions,
and is approximately equal 6- NJ? for both plate-bending models. In practice, with a
maximum core size of 140,000, = 49,000, , words, meshes with ca. 85 joints can be handled.
More details are given in [7].
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Central processor time is difficult to predict being a function of the problem-dependent
number of necessary optimalisation steps. An approximate empirical formula relating CP-
time and number of joints NJ is given by :

CP (time in sec) = (0-3—0-7)107* . NJ*. (71)

Numerical results for a circular reinforced concrete plate in bending with clamped or
simply supported edges under a uniformly distributed load are shown in Fig. 6. Figure 7

Apr?
mp
4 {clamped (exact)
12.0
+ + +
lsimply supported (exact)
6.0 + *
+ : linear - linear model
@ : linear- constant model
+— + S —
20 40 60 NJ

F1G. 6. Circular plate in bending (radius = r) with constant reinforcement m, = P, = P, = N_ = N,
and uriformly distributed load Ap (NJ = number of joints of the triangular element mesh).

Apl?
me
upper bound [9]
A R
+ ¥
400 —r— R ®
@®
+ ®
+ : linear — linear model
200 + @ : linear - constant model
+ 1 +

20 40 60 NJ

Fi1G. 7. Clamped square plate in bending (side length = ) with constant reinforcement and uniformly
distributed load Ap.
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shows corresponding results for a square plate with all edges clamped. While for the
circular plates exact solutions of the ultimate load problem are known, for the clamped
square plate only an upper bound of the true solution could be determined (see [9]).
Figure 8 shows the finite element subdivision as well as the displacement velocity
distribution during collapse along the lines of symmetry for an infinitely large reinforced

F1G. 8. Displacement velocity field pattern for continuous flat slab with constant reinforcement and
uniformly distributed load Ap.

concrete slab, supported by a regular mesh of square columns. The linear-linear model
was used in this example. The result obtained for a column-side to span ratio ¢/l = 1/7
cannot be compared with any known result. A similar calculation for a ratio ¢/l = 0 (i.e.
for point-columns) gives an ultimate load Ap = 11.6-mp/lz, which is in good agreement
with the upper bound Ap = 4 -7 - m,/I* given by [13].

11. SOME PLATE-STRETCHING MODELS

Table 1 describes six possible plate-stretching triangular and quadrilateral element
models. The displacement components in the direction of the coordinates x and y of a
cartesian system lying in the plane of the plate are denoted by u, and u,, corresponding
stress components by ¢,,0,and v = 7,, = 7,,. Normal and shear stresses along element
edges are denoted by ¢, and 1,,.

Within the triangular elements the assumed stress and displacement functions are
constant or linear, within the quadrilateral elements constant or bilinear, i.. linear along
the element edges (see for instance [14, Section 7.2]).

The third, fourth and fifth columns of Table 1 give the shape of the assumed displace-
ment functions within each element, the type of displacement parameters and their ap-
proximate number M for a mesh with NJ joints. The next three columns describe the as-
sumed stress field in a similar way. The last two columns show the position of the points,
where yield conditions must be checked and their approximate number Q.
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TaBLE 1. SIX POSSIBLE PLATE STRETCHING SOLUTIONS

N . Displacement field Stress field Yield condition checkpoints
0. e-
ment Distribution Type of M Distribution Type of N Position of Q
-shape parameters N7 parameters NJ  checkpoints  NJ
1 % Linear u i, at each 2 Linear ¢.6,7 at each 3 At each joint i
joint joint
2 % Linear uu, at each 2 Constant oo, rincach 6 In each element 2
joint element
3 Linear u,u, at each 2 Constant a, or T, on 3 In each element 2
joint each side
4 Bilinear u,u, at each 2 Bilinear g.o,rateach 3 At each joint 1
joint joint
5 Bilinear u, i, at each 2  Constant ootineach 3 Ineachelement |
joint element
6 Constant u u, in each 2 Bilinear 6,.6,T at each 3 At each joint i
element joint

Particularly interesting is the model No. 2, as it can be shown that the obtained value
of A must be, at least for the assumed linear yield conditions, an upper bound of the true
value of the load factor. The transformation (52) is valid without approximations. This
is also the only model for which the ratio N/M = 6/2 is larger than the ratio N /M, = 3/2
of continuous plate-stretching problems, which is not surprising for an equilibrium-
violating upper-bound type of model.

The model No. 6 (with rectangular elements only) has been successfully implemented by
Vollenweider {10] for plain-strain soil mechanics limit load problems, using as yield
condition a linearized form of Coulomb-Mohr’s rupture hypothesis.

12. CONCLUSIONS

In finite element plastic analysis, just as in elastic analysis, “computer shapes theory”.
Because an efficient use of the available hardware can broaden the range of possible
applications enormously, the programming techniques, rather than the purely theoretical
aspects of the problem are of primary importance.

If plastic analysis has to become a widely used tool in civil engineering, like finite
element elastic analysis today already is, much work is left to be done in comparing dif-
ferent models and solution algorithms, and in evaluating the accuracy, which can be ob-
tained with a bearable computational effort.
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An interesting possibility is to use nonlinear optimalisation procedures. Hodge and
Belytschko [6] describe such a procedure for plate bending and discuss the advantages and
disadvantages of nonlinear vs. linear procedures. It seems, however, that for a final conclu-
sion more experience is needed.
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AbcrpakT—PaboTa kacaerca pa3paboTku YMC/IEHHbIX METOAOB ONpEaEICHUS MPEdeIbHON HArPY3KH ABYX-
M TPEXMEPHBIX KOHCTPYKUMHA, npeanonaras WACanabHO XKECTKO-MUIACTUYECKOE MOBEAEHHE Marepuana. B
COrJIACHH C KJTACCHHECKOW TEOPHEH MIACTHYHOCTH, 3a1a4a MPenebHOR HArpy3Ku ONpeaensieTCa MaTeMaTH-
4eckoi popmMyIoit B CMBIC/TE 3a1a4H BBIYMCIEHUA MAKCHMYMA MIIH MUHHMYMa JIMHEHHOH QYHKLIMM, HE3ABN-
CHMbIE MEPEMEHHBIE KOTOPOH MOABEPKEHHBIE HEPABHOMEDPHBIM CHJIAM CBA3U. C LENbIO HCNOJL30BAaHHSA
MeTOAa JIMHEHHOTO MPOrpPaMMHMPOB aHuA, NPUOIMXKAIOTC 3TH BOOOLIE HENWHEHHBIE CUNBI CBAJM PAJaMU
OrpaHHYCHUk IMHEHHbIX HEPABEHCTB. 3JaTEM, MOXHO OMpPede/NUTh IMHEHHBIE YPABHEHHA DABHOBECHS WNH
KMHEMATHYECKON COBMECTMMOCTH, TMPUYEM COOTBETCTBYIOLIME KO3DPHUHEHTH MNOIYYAIOTCS C MOMOLLBIO
MeTONOB BHMPTyanbHOll pabortel. JT10 Tpebyer mnpuema mMojed NAPAMETPUYECKMX HANPAXKEHHUH U
nepeMeLICHHI, MONYYEHHBIX C TOMOIIbIO METOAA KOHEYHOIO 3NeMeHTa. JlaloTCs MMC/IEHHBIE Pe3yJibTaThbl
ans AByXx Mofeneit vernba nnacTHHOK. OMUCHIBAIOTCA M 06CYMAAIOTCA TAKKE BOIMOKHOCTb MCCIIENOBAHUSA
Moenied MNacTUHOK, MOABEPKEHHBIX PACTRKHUIO.



